Auto Annotation Machine

BY Guangrun Wang

Base model: efficientnet-b1+aspp;
Big model: efficientnet-b3+aspp;

def forward(self, x):
    size = (x.shape[2], x.shape[3])
    x = self.efficientnet_model(x)
    x = self.aspp(x)
    x = self.conv_cls(x)
    x = nn.Upsample(size, mode='bilinear', align_corners=True)(x)
    return x

Machine: 8 titanX GPUs, each of which is 12G
Epochs: 50
Test-stage augmentation: [257, 385, 513, 641, 769]:
Test-stage augmentation: Left-right Flipping

Dataset: PASCAL VOC
Training set
1. TrainAug
2. 1/4 TrainAug
3. 1/4 TrainAug + 3/4 TrainAug (Auto annotated)

Test set:
1. VOC Val

Results:
1. TrainAug
Base model w/o multi-scale, w/o flipping:
IoU 0: 91.14 IoU 1: 70.37 IoU 2: 34.44 IoU 3: 82.24 IoU 4: 55.90 IoU 5: 66.08 IoU 6: 86.84 IoU 7: 77.51 IoU 8: 88.38 IoU 9: 32.21 IoU 10: 63.96 IoU 11: 47.69 IoU 12: 80.13 IoU 13: 76.14 IoU 14: 64.28 IoU 15: 77.74 IoU 16: 50.22 IoU 17: 75.06 IoU 18: 44.94 IoU 19: 69.88 IoU 20: 62.75
Mean IoU: 66.57

Base model w/ multi-scale, w/ flipping:
IoU 0: 92.75 IoU 1: 82.19 IoU 2: 39.18 IoU 3: 86.80 IoU 4: 65.64 IoU 5: 72.65 IoU 6: 89.32 IoU 7: 81.98 IoU 8: 91.11 IoU 9: 33.49 IoU 10: 72.78 IoU 11: 46.98 IoU 12: 84.85 IoU 13: 80.99 IoU 14: 71.17 IoU 15: 81.25 IoU 16: 56.47 IoU 17: 81.00 IoU 18: 44.05 IoU 19: 79.13 IoU 20: 65.85
Mean IoU: 71.41

2. 1/4 TrainAug
Base model w/o multi-scale, w/o flipping:
IoU 0: 88.29 IoU 1: 57.06 IoU 2: 28.15 IoU 3: 69.89 IoU 4: 53.46 IoU 5: 42.93 IoU 6: 77.99 IoU 7: 69.24 IoU 8: 79.15 IoU 9: 23.78 IoU 10: 30.61 IoU 11: 21.32 IoU 12: 60.54 IoU 13: 43.70 IoU 14: 58.71 IoU 15: 67.90 IoU 16: 21.41 IoU 17: 41.53 IoU 18: 31.56 IoU 19: 69.03 IoU 20: 56.48
Mean IoU: 52.03

Base model w/ multi-scale, w/ flipping:
IoU 0: 90.03 IoU 1: 65.20 IoU 2: 29.33 IoU 3: 74.74 IoU 4: 61.35 IoU 5: 47.67 IoU 6: 81.33 IoU 7: 73.16 IoU 8: 81.72 IoU 9: 23.15 IoU 10: 26.54 IoU 11: 18.05 IoU 12: 66.63 IoU 13: 44.61 IoU 14: 64.47 IoU 15: 69.18 IoU 16: 18.00 IoU 17: 48.87 IoU 18: 28.74 IoU 19: 73.61 IoU 20: 57.69
Mean IoU: 54.48

Big Model w/o multi-scale, w/o flipping:
IoU 0: 90.03 IoU 1: 67.75 IoU 2: 32.86 IoU 3: 72.25 IoU 4: 62.04 IoU 5: 67.90 IoU 6: 83.94 IoU 7: 76.87 IoU 8: 85.40 IoU 9: 27.14 IoU 10: 63.42 IoU 11: 34.75 IoU 12: 76.64 IoU 13: 62.85 IoU 14: 67.88 IoU 15: 76.35 IoU 16: 43.29 IoU 17: 63.98 IoU 18: 38.06 IoU 19: 76.52 IoU 20: 60.89
Mean IoU: 63.37

Big Model w/ multi-scale, w/ flipping:
IoU 0: 91.56 IoU 1: 76.36 IoU 2: 35.28 IoU 3: 77.22 IoU 4: 67.74 IoU 5: 72.06 IoU 6: 86.69 IoU 7: 80.83 IoU 8: 87.36 IoU 9: 28.88 IoU 10: 65.45 IoU 11: 36.12 IoU 12: 79.04 IoU 13: 65.09 IoU 14: 72.73 IoU 15: 79.33 IoU 16: 46.04 IoU 17: 67.98 IoU 18: 39.44 IoU 19: 80.38 IoU 20: 63.60
Mean IoU: 66.63

3. 1/4 TrainAug + 3/4 TrainAug (Auto annotated)
Base model w/ multi-scale, w/ flipping:
IoU 0: 91.13 IoU 1: 64.52 IoU 2: 36.17 IoU 3: 80.61 IoU 4: 68.63 IoU 5: 68.27 IoU 6: 87.86 IoU 7: 79.37 IoU 8: 87.80 IoU 9: 28.03 IoU 10: 68.95 IoU 11: 40.43 IoU 12: 80.06 IoU 13: 72.18 IoU 14: 74.71 IoU 15: 77.87 IoU 16: 46.76 IoU 17: 68.72 IoU 18: 44.14 IoU 19: 65.97 IoU 20: 62.45
Mean IoU: 66.41

Big model w/ multi-scale, w/ flipping:
IoU 0: 92.08 IoU 1: 68.89 IoU 2: 39.15 IoU 3: 82.89 IoU 4: 72.08 IoU 5: 73.92 IoU 6: 89.51 IoU 7: 79.23 IoU 8: 88.02 IoU 9: 27.94 IoU 10: 76.93 IoU 11: 42.52 IoU 12: 78.66 IoU 13: 73.64 IoU 14: 71.93 IoU 15: 81.44 IoU 16: 46.67 IoU 17: 70.39 IoU 18: 42.19 IoU 19: 78.96 IoU 20: 59.56
Mean IoU: 68.41

Return to all Blogs
Return to homepage